Capnography:
Not just for confirmation

Ernest Yeh, M.D.
Division of EMS
Department of Emergency Medicine
Temple University Hospital
and School of Medicine

Medical Director, Trihampton Rescue Squad
Associate Regional Medical Director, Bucks County EMS

Pennsylvania DOH ALS Protocol
2032-ALS

Just because it is protocol ???

• Know why

Capnography

• What is it?
• Why use it?
• How to use it?
Never missed a tube ????
Intubation Confirmation

• DIRECT VISUALIZATION

• End Tidal CO₂
• Pulse Oximetry
• Breath sounds
• Lack of epigastric sounds
• Misting in the endotracheal tube

Pulse Oximetry

• “Normal” pulse oximetry readings
 – carbon MONOXIDE poisoning
 – potentially high despite true hypoxia
 – similar wavelength absorption

• Accurate but misleading
 – cyanide poisoning
 – oxygen “NOT USABLE”

Pulse Oximetry

• Direct monitoring of hemoglobin saturation

• Little information about peripheral tissue metabolism of oxygen
Breath sounds confirmation

• Limitations
 – Noisy environment
 – Indeterminate exam
 – Mistaken sounds from esophageal intubation

Capnography

• Indirect measure of oxygen METABOLISM

• Information about CO₂ production
 – Pulmonary perfusion
 • Cardiac output
 • Venous return
 – Alveolar ventilation
 – Minute volume
 • Elimination of CO₂

Capnography vs Capnometry

• Waveform interpretation
• End tidal value

Why use it?
Variety of Studies

• Sanders et al. Annals of EM 18(12) 1287-1290 1989
 – Higher mean ET CO₂ in ROSC (pulse and BP)
 – 9 of 35 with ROSC (15 ± 4 mmHg)
 – 26 of 35 without ROSC (7 ± 5 mmHg)
• Callaham and Barton, Critical Care Med 18(4) 358-362 1990
 – ET CO₂ within 5 min of ED arrival
 – ROSC (19 ± 14 mmHg) vs
 – NO ROSC (4 ± mmHg)
Lack of Use

- Variable PaCO₂
 - 16-86 mmHg
 - Significant hypo and hyperventilation

What is it?

- End tidal CO₂ monitoring
 - Qualitative
 - Quantitative

Qualitative

- Colorimetric
- Chemical reaction
- Reacts to CO₂ in exhaled gas
- Change in color
 - Yellow (YES)
 - Purple (PULL)
 - (may vary with different manufacturers)

Quantitative

- Direct/proportional measure of amount of CO₂
Qualitative

• Limitations
 – CO₂ in esophagus
 – Low values (< 4 and 4-15 mmHg)
 • No waveform data
 • Difficult to interpret in low flow states
• Easy Cap II
 – Patient must be > 15 kg
 • Rebreathing CO₂ from device
 • Pediatric version available

Quantitative

• Mainstream sampler
 – Infrared beam
 – Photodetector
 – Absorption of beam
 • Amount of CO₂
 – Intubated patient

Mainstream

• Limitations
 – Sensor/Equipment vulnerable to damage
 • Disposable components available
 – Warm up time
 • Condensation in “viewing window”
 – Bulk to ventilator circuit
Quantitative

- Sidestream sampler
 - May be adapted to a nasal cannula

Datascope Passport Monitors
Limitations

- Sampling rates
 - ~50-200 cc/min
 - Distort waveforms
 - Especially with lower tidal volumes
Problems with Monitoring

- Increase in dead space volume
 - ETT adaptor/connector
 - More important in pediatrics
 - Especially newborns
 - Equipment specific limitations

Where else does CO₂ come from?

- Part of the buffer system

\[\text{HCO}_3^- + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

which is used to maintain a normal pH

Where does CO₂ come from?

- Final product in aerobic metabolism

\[\text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

Metabolism of glucose as well as fatty acids and proteins

Where does CO₂ come from?

- Transported throughout the body in the blood
 - As dissolved CO₂
 - As HCO₃⁻
Amount of CO₂

- Pulmonary capillaries: 40 mmHg
- Alveoli: ~38 mmHg

- Difference allows for diffusion from capillaries to alveoli
- NOT ACTIVE TRANSPORT

How does this help us?

- CO₂ is produced in the tissues
- transported through the venous system
- back to the right side of the heart
- into the pulmonary arteries
- to the pulmonary capillaries
- to the alveoli

Alveolar Ventilation

- Dead space
 - Unused for ventilation
- Tidal volume
 - Fills only to terminal bronchioles
- Last portion of airway
 - Diffusion
 - Individual gas molecules moving at high velocity

Alveolar Ventilation

- Dead space
 - First portion of gas \(\text{exhaled}\) (last portion of gas \(\text{inhaled}\))
 - Contains no CO₂
 - Not involved in actual ventilation
Alveolar Ventilation

- First part of mixed gas
 - Rapid rise of CO₂ level
- Last part of mixed gas
 - Plateau of CO₂ level

So what does all this mean?

- Good waveform implies
 - Adequate circulation to deliver O₂ to tissues
 - Aerobic metabolism
 - Using O₂ and producing CO₂
 - Adequate circulation to return CO₂ to lungs
 - Adequate ventilation to expire CO₂

Cardiopulmonary Resuscitation Goals

- Restore Circulation
- Restore Ventilation
- Restore Oxygenation

Why not just use pulse oximetry?

- Preoxygenation may give up to 4 minutes of reserve
- Requires peripheral pulses
- Frequently vasoconstricted
 - Vasopressors
 - “Clamped” extremities
Why not just use pulse oximetry?

- Detects inadvertent esophageal intubation
 - faster than pulse oximetry
 - especially in the preoxygenated patient
 - before deteriorating physiological parameters

Not just for confirmation…

- Interpreting the waveform
- Following the trends
 - Changes in the patient
 - Changes in tube placement

Waveforms

FIGURE 1 Example of normal capnogram (A), alveolar hypoventilation (B), and apnea (C)
Esophageal Intubation

- False positive with qualitative
- Must interpret the waveform

No Plateau

- Partial obstruction
 - Kinked tube
 - Bronchospasm

Drop to Zero

- Extubated
- Totally obstructed tube
- Sampler disconnect
- Ventilator failure

Asthma

- Before
- After beta agonist
Gradual Decrease

- Hyperventilation
 - “Blowing down CO₂”
- Failing perfusion
 - Decreased venous return

Sudden Drop (not to zero)

- ETT leak
- Sampler leak
- Mild obstruction
 - Mucous plug
 - Condensation

Gradual Increase

- Hypoventilation
- Sudden increase in perfusion
- Bicarbonate infusion

End Tidal CO₂

- Goal measurement (majority of patients)
 - 35 mmHg
- COPD with chronic hypercapnia
 - Baseline elevated
 - May target higher than 40
 - No reliable estimate without knowing actual levels

- Goal measurement (majority of patients)
 - 35 mmHg
- COPD with chronic hypercapnia
 - Baseline elevated
 - May target higher than 40
 - No reliable estimate without knowing actual levels
Guide Resuscitation Efforts

• Improving ET CO2
 – Adequate perfusion/ventilation/oxygenation
 – Lower values = lower rate or survival

• Early termination of efforts
 – < 10 mmHg after 20 minutes of ALS
 – NO SURVIVORS

Endotracheal Tube Placement

• Monitor/document
 – Quality assurance
 – Medical legal

• Any patient movement
• Transfer from stretcher
• Movement of stretcher
• Transfer of care

Not just because you have to…..

• Because
 – you know why
 – and how it helps your patients
Questions???